Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.025
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731855

ABSTRACT

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Subject(s)
Cricetulus , Disease Models, Animal , Sphingomyelin Phosphodiesterase , TRPM Cation Channels , beta-Cyclodextrins , Animals , Sphingomyelin Phosphodiesterase/metabolism , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Mice , Humans , CHO Cells , beta-Cyclodextrins/pharmacology , HEK293 Cells , Membrane Microdomains/metabolism , Membrane Microdomains/drug effects , Pain/drug therapy , Pain/metabolism , Cholesterol/metabolism , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Pregnenolone/pharmacology , Cell Survival/drug effects
2.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715125

ABSTRACT

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Subject(s)
Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Animals
4.
Int Immunopharmacol ; 133: 112083, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38648714

ABSTRACT

Japanese encephalitis virus (JEV) infection is considered a global public health emergency. Severe peripheral neuropathy caused by JEV infection has increased disability and mortality rates in recent years. Because there are very few therapeutic options for JEV infection, prompt investigations of the ability of clinically safe, efficacious and globally available drugs to inhibit JEV infection and ameliorate peripheral neuropathy are urgently needed. In this study, we found that high doses of intravenous immunoglobulin, a function inhibitor of acid sphingomyelinase (FIASMA), inhibited acid sphingomyelinase (ASM) and ceramide activity in the serum and sciatic nerve of JEV-infected rats, reduced disease severity, reversed electrophysiological and histological abnormalities, significantly reduced circulating proinflammatory cytokine levels, inhibited Th1 and Th17 cell proliferation, and suppressed the infiltration of inflammatory CD4 + cells into the sciatic nerve. It also maintained the peripheral nerve-blood barrier without causing severe clinical side effects. In terms of the potential mechanisms, ASM was found to participate in immune cell differentiation and to activate immune cells, thereby exerting proinflammatory effects. Therefore, immunoglobulin is a FIASMA that reduces abnormal immune responses and thus targets the ASM/ceramide system to treat peripheral neuropathy caused by JEV infection.


Subject(s)
Ceramides , Encephalitis Virus, Japanese , Encephalitis, Japanese , Immunoglobulins, Intravenous , Peripheral Nervous System Diseases , Sphingomyelin Phosphodiesterase , Animals , Ceramides/metabolism , Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins, Intravenous/pharmacology , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/physiology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/virology , Rats , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/immunology , Male , Sciatic Nerve/pathology , Cytokines/metabolism , Signal Transduction/drug effects , Humans , Th1 Cells/immunology , Rats, Sprague-Dawley , Th17 Cells/immunology
5.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542220

ABSTRACT

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Subject(s)
Diabetes Mellitus, Type 2 , Sphingomyelin Phosphodiesterase , Humans , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Obesity/metabolism , Oleic Acid/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/metabolism , Triglycerides/metabolism
6.
J Bacteriol ; 206(3): e0038223, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38411048

ABSTRACT

Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.


Subject(s)
Betaine , Pseudomonas aeruginosa , Betaine/metabolism , Pseudomonas aeruginosa/metabolism , Sphingosine/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Type C Phospholipases/genetics , Type C Phospholipases/metabolism , Ceramidases/metabolism
7.
BMC Public Health ; 24(1): 395, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321448

ABSTRACT

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2 , Sphingomyelin Phosphodiesterase/metabolism , Ceramides/metabolism , Sphingolipids
8.
Cell Signal ; 116: 111064, 2024 04.
Article in English | MEDLINE | ID: mdl-38266744

ABSTRACT

Abnormal inflammation of vascular endothelial cells occurs frequently in diabetic retinopathy (DR). Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) is a lipid raft enzyme and plays an anti-inflammatory role in various diseases but its function in DR-related vascular endothelial dysfunction remains unknown. We first found that SMPDL3B expression was upregulated from week 10 to 18 in the retinal tissues of db/db mice. Particularly, the high expression of SMPDL3B was mainly observed in retinal vascular endothelium of DR mice. To interfere retinal SMPDL3B expression, adeno-associated viruses 2 (AAV-2) containing SMPDL3B specific shRNA (1233-1253 bp) were injected into the vitreous cavity of db/db mice. SMPDL3B silencing exacerbated the spontaneous DR by further activating the NF-κB/NLRP3 pro-inflammatory pathway. In vitro, human retinal microvascular endothelial cells (HRVECs) were infected with SMPDL3B-shRNA lentiviruses and then stimulated with 30 mM glucose (HG) for 24 h. SMPDL3B-silenced HRVECs secreted more interleukin-1ß and had enhanced nuclear p65 translocation. Notably, HG treatment induced the palmitoylation of SMPDL3B. Zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) is a palmitoyltransferase that catalyzes the palmitoylation of its substrates, HG exposure increased the interaction between ZDHHC5 and SMPDL3B in HRVECs. 2-BP, a palmitoylation inhibitor, accelerated the protein degradation of SMPDL3B, whereas palmostatin B, a depalmitoylation inhibitor, decreased its turnover rate in HRVECs. Collectively, the present study suggests a compensatory increase of SMPDL3B in HG-treated HRVECs and the retinal tissues of DR mice, indicating that SMPDL3B may be a potential target for DR treatment.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Humans , Mice , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Mice, Inbred Strains , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Small Interfering/metabolism , Sphingomyelin Phosphodiesterase/metabolism
9.
Article in English | MEDLINE | ID: mdl-37956788

ABSTRACT

Acid sphingomyelinase deficiency is a neurodegenerative lysosomal storage disorder caused by mutations in the sphingomyelin-degrading enzyme acid sphingomyelinase (ASM) gene. Upregulated neuroinflammation has been well-characterized in an ASM knockout mouse model of acid sphingomyelinase deficiency disease, but lipid mediator pathways involved in 'mediating' inflammation and inflammation-resolution have yet to be characterized. In this study, we 1) measured free (bioactive) and esterified (inactive) lipid mediators involved in inflammation and inflammation resolution in cerebellum and neuronal cultures of ASM knockout (ASMko) mice and wildtype (WT) controls, and 2) quantified the esterification of labeled pro-resolving free d11-14(15)-epoxyeicosatrienoic acid in cultured neurons from ASMko and WT mice. We found elevated concentrations of esterified pro-resolving lipid mediators and hydroxyeicosatrienoic acids typically destined for pro-resolving lipid mediator synthesis (e.g. lipoxins) in the cerebellum and neurons of ASMko mice compared to controls. Free d11-14(15)-epoxyeicosatrienoic acid esterification within neurons of ASMko mice was significantly elevated compared to WT. Our findings show evidence of increased inactivation of free pro-resolving lipid mediators through esterification in ASMko mice, suggesting impaired resolution as a new pathway underlying ASM deficiency pathogenesis.


Subject(s)
Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Animals , Mice , Brain/metabolism , Esterification , Inflammation/metabolism , Mice, Knockout , Neurons/metabolism , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/metabolism , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism
10.
Dev Biol ; 506: 31-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052296

ABSTRACT

During epithelial-to-mesenchymal transition (EMT), significant rearrangements occur in plasma membrane protein and lipid content that are important for membrane function and acquisition of cell motility. To gain insight into how neural crest cells regulate their lipid content at the transcriptional level during EMT, here we identify critical enhancer sequences that regulate the expression of SMPD3, a gene responsible for sphingomyelin hydrolysis to produce ceramide and necessary for neural crest EMT. We uncovered three enhancer regions within the first intron of the SMPD3 locus that drive reporter expression in distinct spatial and temporal domains, together collectively recapitulating the expression domains of endogenous SMPD3 within the ectodermal lineages. We further dissected one enhancer that is specifically active in the migrating neural crest. By mutating putative transcriptional input sites or knocking down upstream regulators, we find that the SOXE-family transcription factors SOX9 and SOX10 regulate the expression of SMPD3 in migrating neural crest cells. Further, ChIP-seq and nascent transcription analysis reveal that SOX10 directly regulates expression of an SMPD3 enhancer specific to migratory neural crest cells. Together these results shed light on how core components of developmental gene regulatory networks interact with metabolic effector genes to control changes in membrane lipid content.


Subject(s)
Avian Proteins , Neural Crest , SOXE Transcription Factors , Sphingomyelin Phosphodiesterase , Gene Expression Regulation, Developmental , Introns , Lipids , Neural Crest/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Chickens , Animals , Avian Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
11.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068956

ABSTRACT

The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.


Subject(s)
Diabetes Mellitus, Experimental , Hypertension , Rats , Animals , Sphingomyelin Phosphodiesterase/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Nephrons/metabolism , Sphingolipids
12.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139245

ABSTRACT

Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.


Subject(s)
Antineoplastic Agents , Cisplatin , Cisplatin/pharmacology , Cisplatin/metabolism , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Hair Cells, Auditory/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis , Caspases/metabolism , Dietary Supplements , Cell Survival
13.
Biomolecules ; 13(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-38002305

ABSTRACT

Acid ceramidase (AC) is a lysosomal enzyme required to hydrolyze ceramide to sphingosine by the removal of the fatty acid moiety. An inherited deficiency in this activity results in two disorders, Farber Lipogranulomatosis and spinal muscular atrophy with myoclonic epilepsy, leading to the accumulation of ceramides and other sphingolipids in various cells and tissues. In addition to ceramide hydrolysis, several other activities have been attributed to AC, including a reverse reaction that synthesizes ceramide from free fatty acids and sphingosine, and a deacylase activity that removes fatty acids from complex lipids such as sphingomyelin and glycosphingolipids. A close association of AC with another important enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM), has also been observed. Herein, we used a highly purified recombinant human AC (rhAC) and novel UPLC-based assay methods to investigate the recently described deacylase activity of rhAC against three sphingolipid substrates, sphingomyelin, galactosyl- and glucosylceramide. No deacylase activities were detected using this method, although we did unexpectedly identify a significant ASM activity using natural (C-18) and artificial (Bodipy-C12) sphingomyelin substrates as well as the ASM-specific fluorogenic substrate, hexadecanoylamino-4-methylumbelliferyl phosphorylcholine (HMU-PC). We showed that this ASM activity was not due to contaminating, hamster-derived ASM in the rhAC preparation, and that the treatment of ASM-knockout mice with rhAC significantly reduced sphingomyelin storage in the liver. However, unlike the treatment with rhASM, this did not lead to elevated ceramide or sphingosine levels.


Subject(s)
Acid Ceramidase , Sphingomyelins , Animals , Mice , Cricetinae , Humans , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Sphingomyelins/metabolism , Sphingosine/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Ceramides/metabolism , Sphingolipids/metabolism , Fatty Acids
14.
Nat Commun ; 14(1): 7755, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012235

ABSTRACT

Enzymatic breakdown of sphingomyelin by sphingomyelinase (SMase) is the main source of the membrane lipids, ceramides, which are involved in many cellular physiological processes. However, the full-length structure of human neutral SMase has not been resolved; therefore, its catalytic mechanism remains unknown. Here, we resolve the structure of human full-length neutral SMase, sphingomyelinase 1 (SMPD2), which reveals that C-terminal transmembrane helices contribute to dimeric architecture of hSMPD2 and that D111 - K116 loop domain is essential for substrate hydrolysis. Coupled with molecular docking, we clarify the binding pose of sphingomyelin, and site-directed mutagenesis further confirms key residues responsible for sphingomyelin binding. Hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamic (MD) simulations are utilized to elaborate the catalysis of hSMPD2 with the reported in vitro substrates, sphingomyelin and lyso-platelet activating fator (lyso-PAF). Our study provides mechanistic details that enhance our knowledge of lipid metabolism and may lead to an improved understanding of ceramide in disease and in cancer treatment.


Subject(s)
Sphingomyelin Phosphodiesterase , Sphingomyelins , Humans , Sphingomyelins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Molecular Docking Simulation , Ceramides/metabolism
15.
J Proteome Res ; 22(12): 3893-3900, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37883661

ABSTRACT

Rheumatoid arthritis (RA) is a long-term autoimmune condition that causes joint and surrounding tissue inflammation. Lipid mediators are involved in inflammation and deterioration of the joints. Despite attempts to discover effective drug targets to intervene with lipid metabolism in the disease, progress has been limited. In this study, precise lipidomic technology was employed to quantify a broad range of serum ceramides and sphingomyelin (SM) in a large cohort, revealing an association between the accumulation of circulating ceramides and disturbed ceramide/SM cycles during the progression of RA. In our investigation, we discovered that eight ceramides exhibited a positive correlation with the activity of RA, thereby enhancing the accuracy of RA diagnosis, particularly in patients with serum antibody-negative RA. Furthermore, the enzyme SM phosphodiesterase 3 (SMPD3) was found to disrupt the circulating SM cycle and accelerate the progression of RA. The activity of SMPD3 can be inhibited by methotrexate, resulting in decreased metabolic conversion of SM to ceramide. These findings suggest that targeting the SM cycle may provide a new therapeutic option for RA.


Subject(s)
Arthritis, Rheumatoid , Sphingomyelins , Humans , Sphingomyelins/metabolism , Ceramides/metabolism , Lipidomics , Sphingomyelin Phosphodiesterase/metabolism , Inflammation
16.
Cell Commun Signal ; 21(1): 305, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37904133

ABSTRACT

BACKGROUND: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS: Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS: Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION: Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.


Subject(s)
Sphingomyelin Phosphodiesterase , Sphingomyelins , Mice , Animals , Humans , Sphingomyelin Phosphodiesterase/metabolism , Annexin A5 , Reactive Oxygen Species/metabolism , Phosphatidylserines , Ceramides/metabolism , Retinal Ganglion Cells/metabolism
17.
J Thromb Haemost ; 21(12): 3414-3431, 2023 12.
Article in English | MEDLINE | ID: mdl-37875382

ABSTRACT

BACKGROUND: Our recent studies showed that activated factor (F) VII (FVIIa) releases extracellular vesicles (EVs) from the endothelium. FVIIa-released EVs were found to be enriched with phosphatidylserine (PS) and contribute to the hemostatic effect of FVIIa in thrombocytopenia and hemophilia. OBJECTIVE: To investigate mechanisms by which FVIIa induces EV biogenesis and enriches EVs with PS. METHODS: FVIIa activation of acid sphingomyelinase (aSMase) was evaluated by its translocation to the cell surface. The role of aSMase in the biogenesis of FVIIa-induced EVs and their enrichment with PS was investigated using specific siRNAs and inhibitors of aSMase and its downstream metabolites. Wild-type and aSMase-/- mice were injected with a control vehicle or FVIIa. EVs released into circulation were quantified by nanoparticle tracking analysis. EVs hemostatic potential was assessed in a murine thrombocytopenia model. RESULTS: FVIIa activation of aSMase is responsible for both the externalization of PS and the release of EVs in endothelial cells. FVIIa-induced aSMase activation led to ceramide generation and de novo expression of transmembrane protein 16F. Inhibitors of ceramidases, sphingosine kinase, or sphingosine-1-phosphate receptor modulator blocked FVIIa-induced expression of transmembrane protein 16F and PS externalization without interfering with FVIIa release of EVs. In vivo, FVIIa release of EVs was markedly impaired in aSMase-/- mice compared with wild-type mice. Administration of a low dose of FVIIa, sufficient to induce EVs release, corrected bleeding associated with thrombocytopenia in wild-type mice but not in aSMase-/- mice. CONCLUSION: Our study identifies a novel mechanism by which FVIIa induces PS externalization and releases PS-enriched EVs.


Subject(s)
Extracellular Vesicles , Hemostatics , Thrombocytopenia , Animals , Mice , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Factor VIIa/metabolism , Phosphatidylserines/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Thrombocytopenia/metabolism
18.
Fetal Pediatr Pathol ; 42(6): 936-949, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818552

ABSTRACT

OBJECTIVE: It remains unclear whether the low amount of SMPDL-3b required for rituximab binding is the cause of treatment resistance in patients with treatment-resistant nephrotic syndrome with advanced podocyte injury. Given the limited number of studies on the relationship between rituximab and SMPDL-3b, this study was conducted to assess whether SMPDL-3b levels in pretreatment renal biopsy specimens can be used to predict the clinical effectiveness of immunosuppressive drugs, especially rituximab, in children with nephrotic syndrome. METHODS: Kidney biopsy specimens from 44 patients diagnosed with idiopatic nephrotic syndrome were analyzed using immunohistochemical staining with an anti-SMPDL-3b antibody and real-time polymerase chain reaction (PCR) for SMPDL-3b mRNA expression. RESULTS: We showed that SMPDL-3b mRNA expression and anti-SMPDL-3b antibody staining did not differ significantly between the patient groups with different responses to immunosuppressive therapies. CONCLUSION: Our results suggest that SMPDL-3b may actually be an indicator of disease progression rather than a marker for predicting response to a particular immunosuppressive agent.


Subject(s)
Nephrotic Syndrome , Child , Humans , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Rituximab/adverse effects , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelin Phosphodiesterase/therapeutic use , Immunosuppressive Agents/therapeutic use , Kidney/metabolism , Biopsy , RNA, Messenger/therapeutic use
19.
Arch Toxicol ; 97(12): 3285-3301, 2023 12.
Article in English | MEDLINE | ID: mdl-37707622

ABSTRACT

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.


Subject(s)
Sphingomyelin Phosphodiesterase , Spider Venoms , Animals , Humans , Inflammation , Interleukin-1/metabolism , Phosphoric Diester Hydrolases/toxicity , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Spiders/chemistry , Spiders/metabolism , Spider Venoms/toxicity , Spider Bites/pathology , ErbB Receptors/metabolism
20.
Blood ; 142(20): 1708-1723, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37699202

ABSTRACT

Hematopoietic stem and progenitor cell (HSPC) transplantation serves as a curative therapy for many benign and malignant hematopoietic disorders and as a platform for gene therapy. However, growing needs for ex vivo manipulation of HSPC-graft products are limited by barriers in maintaining critical self-renewal and quiescence properties. The role of sphingolipid metabolism in safeguarding these essential cellular properties has been recently recognized, but not yet widely explored. Here, we demonstrate that pharmacologic and genetic inhibition of neutral sphingomyelinase 2 (nSMase-2) leads to sustained improvements in long-term competitive transplantation efficiency after ex vivo culture. Mechanistically, nSMase-2 blockade activates a canonical integrated stress response (ISR) and promotes metabolic quiescence in human and murine HSPCs. These adaptations result in part from disruption in sphingolipid metabolism that impairs the release of nSMase-2-dependent extracellular vesicles (EVs). The aggregate findings link EV trafficking and the ISR as a regulatory dyad guarding HSPC homeostasis and long-term fitness. Translationally, transient nSMase-2 inhibition enables ex vivo graft manipulation with enhanced HSPC potency.


Subject(s)
Hematopoietic Stem Cell Transplantation , Sphingomyelin Phosphodiesterase , Animals , Humans , Mice , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Hematopoietic Stem Cells/metabolism , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...